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Abstract 
____ The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a 

directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing 

particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the 

particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler 

velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along the 

ultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than 

signals reflected from points closer to the detector. The effect is very much akin to that modeled by the 

attenuated Radon transform in emission computed tomography. 

A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. 

Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of 

the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result 

was compared with the reconstruction of longitudinal projections of the vector field without attenuation. If 

attenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field 

from only one set of directional projection measurements. A better reconstruction was obtained with attenuation 

than without attenuation implying that attenuation provides important information for the reconstruction of flow 

vector fields. 

This confirms previous work where we showed that knowledge of the attenuation distribution helps in the 

reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of 

ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow 

information is obtained with continuous wave Doppler. 

 

 
 



 

 

 

 

 

I. INTRODUCTION 

The Doppler flow measurements obtained using a directional 

beam of a continuous ultrasound wave can be formulated as a 

directional projection of a flow vector field [1,2,3]. The 

continuous wave reflects from points at different distances from 

the ultrasound detector. Signals reflected from points further away 

from the detector will have lower amplitude than signals reflected 

from points closer to the detector. This effect can be thought of as 

being very much akin to the attenuated Radon transform in 

emission computed tomography. Previous work performed by our 

group [4] indicates that when there is no attenuation, the 

solenoidal component of the vector field can be reconstructed 

from the longitudinal projection of the vector field and the 

irrotational component can be reconstructed from the transversal 

projection. When there is attenuation, however, the full two-

dimensional (2D) vector field can be reconstructed from one 

directional projection data set [5-8]. In this paper, we investigate 

whether introducing a known attenuator to the directional 

projection measurements helps reconstruction of a vector field 

from only the longitudinal measurements and thus, exploits the 

potential use of attenuation in reducing the required number of 

measurements.  

II. MODELING DOPPLER MEASUREMENTS 

When a continuous ultrasound beam bounces against a flowing 

particle, a signal is backscattered. This signal obtains a Doppler 

frequency shift proportional to the speed of the particle along the 

beam. This occurs for each particle along the beam giving rise to 

a Doppler velocity spectrum. The first moment of the spectrum 

provides the directional projection of the flow along the 

ultrasound beam.  

The following development follows that presented in [1,2]. 

Consider a stationary flow vector field f  in a vessel. At two 

adjacent points outside the body, a transmitter and a receiver are 

placed. Assume that a collimated ultrasonic wave 
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frequency 0ωωωω  is transmitted along an oriented straight line 

L with velocity c and meets a particle with velocity v  along L  

( v  is the projected component of f  onto L ), then the reflected 

signal obtains a Doppler frequency shift   
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If cv << then the approximate frequency shift is 
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If the reflection of the signal can be modeled by a reflectivity 

coefficient ρρρρ , then the signal after reflection at the point x can 

be written as 
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For a stream of particles, the superposition of the contributions 

from each particle gives rise to the reflected signal 
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where dvvLf ),,,( ρρρρσσσσ  is a weight depending on the reflectivity 

ρρρρ  and on the velocity component along L  of the reflecting 

particles. More precisely, if 
Le  is the unit directional vector of 

L  and ds  is the Lebesgue measure on ℜ ,  then 
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),,,( vLf ρρρρσσσσ  can be thought of as the velocity spectrum of 

f along L . The first moment of dvvLf ),,,( ρρρρσσσσ  is 
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If dsedS LL = , then the previous expression provides the 

Doppler-Radon transform 
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We see that sigma is a rescaling of the Fourier transform of the 

signal around 0ωωωω .  From this we can write the Radon-Doppler 

transform  
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III. VECTOR TOMOGRAPHY 

In this section we will define the vector tomography problem as 

scalar measurements given by the integral transforms of the vector 

field  
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where L  is some line in space and ωωωω
v

 is a unit vector indicating 

some direction. The attenuated Radon transform of the vector 

field is given by  
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In 2D vector tomography, two typical transforms are the 

longitudinal transform, where ωωωω
v

 is along the line L of 

integration, and the transversal transform where ωωωω
v

 is orthogonal 

to L . It is known that both the longitudinal and the transversal 

projections are necessary to reconstruct the vector field V
v

. 

However, if these transforms are attenuated, only one of them is 

necessary to reconstruct the full vector field [5]-[8]. An analytical 

algorithm is presented in [5] and [6] for reconstructing the 

complete vector field from attenuated longitudinal projections; 



 

 

 

 

 

and an analytical algorithm is presented in [7] for reconstructing 

the complete field from attenuated transversal projections. 

Without attenuation, the reconstruction of the longitudinal 

projections provides the solenoidal component and reconstruction 

of the transversal projections provides the irrotational component 

of the vector field. 

IV. NUMERICAL RESULTS 

In this paper a least squares method was used in the 

reconstruction of the full vector field )(xV
v

 from simulated 

projection measurements with and without attenuation. The 

objective function was chosen to be 
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where ωωωω
vg  are the directional projection measurements, and the 

summation is for all projection samples at detector positions s  

and angle θθθθ  and all directional measurements ωωωω
v

. The 

reconstruction results were obtained using the gradient algorithm. 

In this simulation, directional projections were used where the 

unit vector ωωωω
v

 was along the direction of the projections. In Fig. 

1, the reconstruction of the vector components is shown. The 

reconstruction (last column) from non attenuated projections is 

neither a pure solenoidal component of the vector field nor a pure 

irrotational component. The components of the vector field seem 

to bleed into the other component producing ghosts in the other 

component. The best results are obtained with the reconstruction 

of attenuated longitudinal directional projections with knowledge 

of the attenuation.  
 

Figure 1. Vector Field Reconstructions From Longitudinal Projection 

Measurements. The top and bottom rows are the first and second component 

of the 2-D vector field. The first column is the original, the second column is 
the reconstruction of attenuated projections, and the last column is the 

reconstruction without attenuation. 

V. DISCUSSION 

In this work we simulated the reconstruction of vector fields 

from their scalar projections, both with and without attenuation. 

The comparisons show that when using a simple least squares 

criterion, attenuation helps in reconstructing the full vector field 

from insufficient measurements. We show that this has 

application for Doppler ultrasonic imaging, but may have 

implication for diffusion tensor MR tomographic imaging.   
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